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Autocompletion Voice Recognition Fitness Tracker

Model Personalization Adapts Models by Training on 
User Data to Improve Accuracy
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Fine-tune on-device

Key Challenge: Limited memory
for DNN training!

Model Fine-tuning – Train on Edge

Pros:
+ guarantees user’s privacy as all data stays 
on their device
+ enables offline device operation

Cons:
- cannot train modern DNNs on edge devices

Train
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How to reduce the memory and energy
requirements of ML training for modern
DNN architectures within the constraints of
edge devices?
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POET: Private Optimal Energy Training

{SOTA ML model, 
memory and runtime 
constraints}
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POET: Private Optimal Energy Training

Accurate cost profile of 
ML operators on target 
edge platform!
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POET: Private Optimal Energy Training

Incorporate memory
and runtime constraints 
into a Mixed Integer 
Linear Program (MILP) 
formulation
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POET: Private Optimal Energy Training

POET finds a provably 
optimal solution 
through integrated 
rematerialization and 
paging.
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POET: Private Optimal Energy Training

Logical 
Time

Layer of Neural Network

Forward
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Pixelated box indicates activation tensor for 
Layer ‘l’ is resident in RAM at timestep ‘t’

POET’s integrated rematerialization and paging
search space finds advanced solutions that are
not possible through simple heuristics.
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Result: POET lowers energy consumption and allows training large 
models previously not possible!

Lower is better
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Result: POET lowers energy consumption and allows training large 
models previously not possible!

Naïve Strategy (Tensorflow / Torch)
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Result: POET lowers energy consumption and allows training large 
models previously not possible!

Naïve Strategy (Tensorflow / Torch)

POET lowers energy 
consumption at all budgets
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POET lowers energy 
consumption at all budgets

Result: POET lowers energy consumption and allows training large 
models previously not possible!

Naïve Strategy (Tensorflow / Torch)

POET’s integrated 
Rematerialization and 
Paging enables training 
with much smaller memory 
budgets which was 
previously not possible!
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Result: POET lowers energy consumption and allows training large 
models previously not possible!

POET’s integrated 
Rematerialization and 
Paging enables training 
with much smaller memory 
budgets which was 
previously not possible!
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• POET enables training SOTA DNN models locally on 
memory-constrained edge devices.
• POET’s fine grained profiling results in accurate cost profiles. 
• POET’s MILP formulation finds the optimal training schedule 

through integrated rematerialization and paging.

shishirpatil@berkeley.edu

POET – Private Optimal Edge Training 

Conclusion

https://poet.cs.berkeley.edu
https://github.com/ShishirPatil/poet
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