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Model Personalization Adapts Models by Training on
User Data to Improve Accuracy

Hi! I'm heading to the store] )

stores storefront store's
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Autocompletion Voice Recognition Fitness Tracker
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Model Fine-tuning — Train on Edge

Fine-tune on-device

— lrain

Pros:

+ guarantees user’s privacy as all data stays
on their device
+ enables offline device operation

Key Challenge: Limited memory
for DNN training!

Cons:
- cannot train modern DNNs on edge devices
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How to reduce the memory and energy
requirements of ML training for modern
DNN architectures within the constraints of

edge devices?

https://poet.cs.berkeley.edu
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Training is Memory Intensive since Activation from
Forward Pass Need to be Stored for Backpropagation
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Rematerialization and Paging: Two Techniques to Reduce
Memory Consumption

RAM 4 Peak RAM (no rematerialization nor paging)
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Rematerialization:
Free early & recompute 10
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Rematerialization and Paging: Two Techniques to Reduce
Memory Consumption

RAM 4 Peak RAM (no rematerialization nor paging)

used

Forward Pass

Backward Pass

Time
>

Additional Energy and

Rematerialization: runtime due to
Free early & recompute recomputation
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Rematerialization and Paging: Two Techniques to Reduce
Memory Consumption

RAM 4 Peak RAM (no rematerialization nor paging)
used| 0000

Forward Pass
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Backward Pass

00 =W
— Time

Additional Energy due to Paging

Paging:
Page-out to secondary storage and page-in Just-in-Time!
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POET: Private Optimal Energy Training

Neural net
model

o>,

{SOTA ML model,
memory and runtime
constraints}
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POET: Private Optimal Energy Training

Neural net\ Operator cost
model profile
oo |7 B2

g J

)

Accurate cost profile of
ML operators on target
edge platform!
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POET: Private Optimal Energy Training

(Neural net\ Operator cost POET solver

model profile
:I|> (@) |:> min total energy usage
¢‘ E A % s.t. memory constraint

s.t. runtime constraint

Incorporate memory @
and runtime constraints

into a Mixed Integer
Linear Program (MILP)

formulation
16
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POET: Private Optimal Energy Training

(" :
( Neural net ) Operator cost POET solver Execute on edge device

model profile —
¢‘ :I|> E ((EA») # |:> min total energy usage |:> (1)Remater|a||ze@.>®

s.t. memory constraint 2P o { ->ﬂ
s.t. runtime constraint age 1o 1ias
J % )

POET finds a provably @
optimal solution

through integrated
rematerialization and

paging.

17

POET: Training Neural Networks on Tiny Devices https://poet.cs.berkeley.edu



POET: Private Optimal Energy Training

Layer of Neural Network

0 20 40 60 80 100 120

20

Pixelated box indicates activation tensor for

Forward- Layer ‘" is resident in RAM at timestep ‘t’
Logical .
Time
. POET’s integrated rematerialization and paging
search space finds advanced solutions that are
Backward- . : .
not possible through simple heuristics.

120
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Result: POET lowers energy consumption and allows training large
models previously not possible!

ResNet18 on Cortex A72
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-+%-- PyTorch baseline = -==- DTR (Kirasame et al. 2021) --=-_ Checkmate (Jain et al. 2020)
-—=—- POET (ours) -——- revolve (Griewank and Walther 2000) —-=-- Chen et al. 2016

19

POET: Training Neural Networks on Tiny Devices https://poet.cs.berkeley.edu



Result: POET lowers energy consumption and allows training large
models previously not possible!

ResNet18 on Cortex A72

— — — —
o o o -
N a N o
o o ol o

1.000

0.975

Naive Strategy (Tensorflow / Torch) ]

Relative Energy Usage FWD+BWD

o
©
o
o

0.2 0.4 0.6 0.8 1.0
Activation RAM savings

-+%-- PyTorch baseline = -==- DTR (Kirasame et al. 2021) --=-_ Checkmate (Jain et al. 2020)
-—=—- POET (ours) -——- revolve (Griewank and Walther 2000) —-=-- Chen et al. 2016

20

POET: Training Neural Networks on Tiny Devices https://poet.cs.berkeley.edu



Result: POET lowers energy consumption and allows training large
models previously not possible!

POET lowers energy
ResNet18 on Cortex A72 consumption at all budgets
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Result: POET lowers energy consumption and allows training large
models previously not possible!

s N
POET lowers energy

kconsumption at all budgetsj

POET’s integrated
Rematerialization and
Paging enables training
with much smaller memory
budgets which was
previously not possible!
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ResNet18 on Cortex A72

BERT (Transformer) on Cortex A72

POET’s integrated
Rematerialization and
Paging enables training
with much smaller memory
budgets which was
previously not possible!
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POET - Private Optimal Edge Training

Conclusion

* POET enables training SOTA DNN models locally on
memory-constrained edge devices.

 POET’s fine grained profiling results in accurate cost profiles.

 POET’s MILP formulation finds the optimal training schedule
through integrated rematerialization and paging.
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