Learning to Design Accurate Deep Learning Accelerators with Inaccurate Multipliers

Paras Jain^{2*}

with Safeen Huda¹, Martin Maas¹, Joseph Gonzalez², Ion Stoica² and Azalia Mirhoseini¹

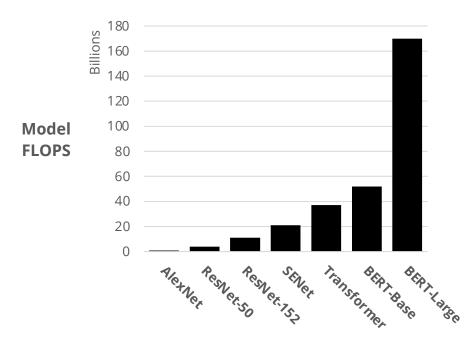
¹Google

² UC Berkeley

* Work done while an intern at Google Brain

Google Research

Deep learning's inference energy problem

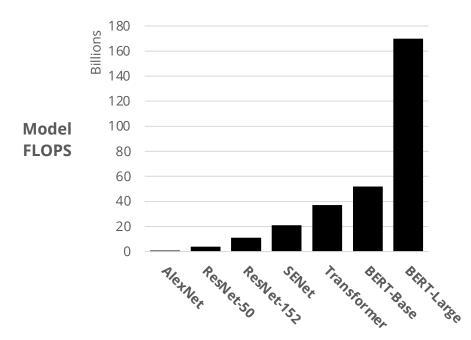


Rise of highparameter models

Learning to Design Accurate Deep Learning Accelerators with Inaccurate Multipliers

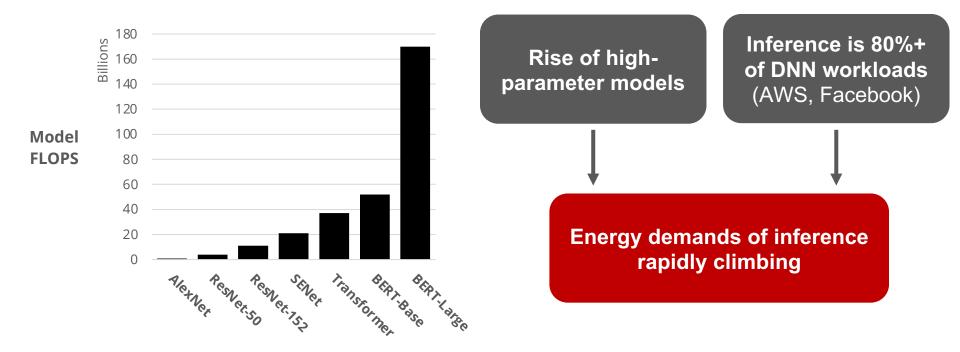
Google Research

Deep learning's inference energy problem

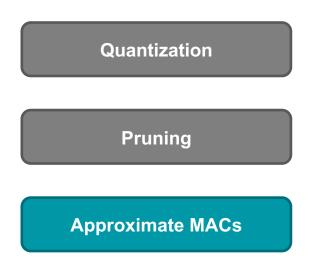


Rise of highparameter models Inference is 80%+ of DNN workloads (AWS, Facebook)

Deep learning's inference energy problem

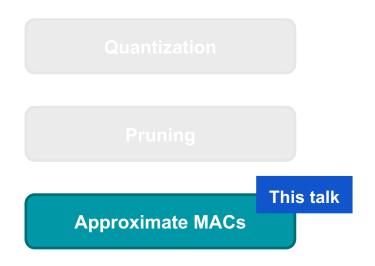


Approximate computing as a new way to save power on DNN accelerators



• Deep learning models are tolerant to approximations like quantization

Approximate computing as a new way to save power on DNN accelerators



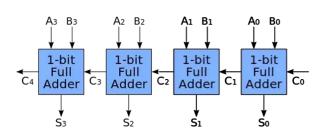
- Deep learning models are tolerant to approximations like quantization
- We study: emerging approximate multipliers + adders to trade-off accuracy for power
- *Complementary* approach to quantization and sparsity
- **Challenge:** how to maintain high accuracy under approximation?

Approximate computing as a new way to save power on DNN accelerators

How to achieve power savings with an approximate inference accelerator without any accuracy loss on a large-scale dataset?

Learning to Design Accurate Deep Learning Accelerators with Inaccurate Multipliers

Background: approximate MACs to trade-off power and accuracy

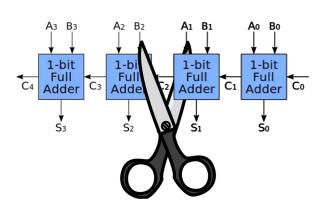


- Parts of fully-accurate circuits can be removed to trade-off accuracy for better power efficiency
- Example: truncate the carry chain in an 8-bit adder
- Extensive prior work to produce such multipliers/adders [1] [2] [survey].
- <u>Functionally</u> approximate circuits only

https://dl.acm.org/doi/10.1145/2228360.2228509
 https://ieeexplore.ieee.org/abstract/document/7926993
 [survey] https://www.osti.gov/pages/servlets/purl/1286958

Learning to Design Accurate Deep Learning Accelerators with Inaccurate Multipliers

Background: approximate MACs to trade-off power and accuracy

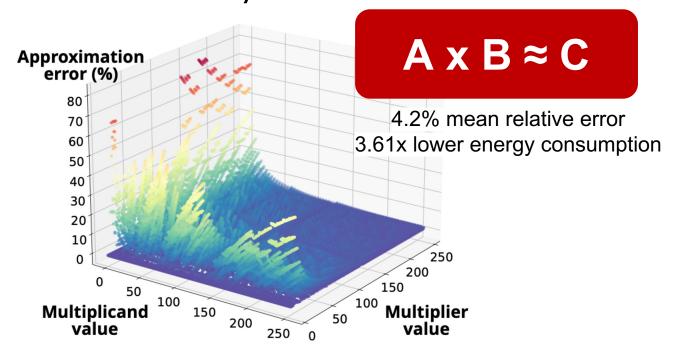


- Parts of fully-accurate circuits can be removed to trade-off accuracy for better power efficiency
- Example: truncate the carry chain in an 8-bit adder
- Extensive prior work to produce such multipliers/adders [1] [2] [survey].
- <u>Functionally</u> approximate circuits only

https://dl.acm.org/doi/10.1145/2228360.2228509
 https://ieeexplore.ieee.org/abstract/document/7926993
 [survey] https://www.osti.gov/pages/servlets/purl/1286958

Learning to Design Accurate Deep Learning Accelerators with Inaccurate Multipliers

Background: approximate MACs to trade-off power and accuracy



V. Mrazek, R. Hrbacek, Z. Vasicek and L. Sekanina, EvoApprox8b: Library of approximate adders and multipliers for circuit design and benchmarking of approximation methods. Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017

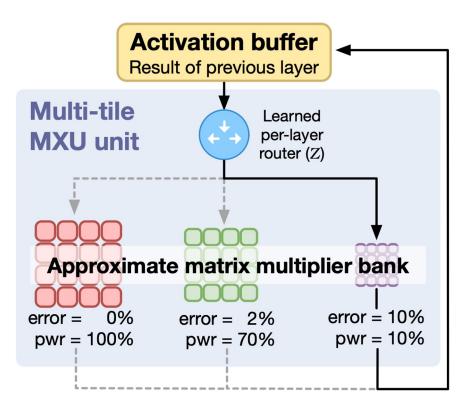
Challenge: Prior designs with approximate MACs degrade accuracy

	Largest dataset	Model MACs	Retrain free?	Zero loss?	Must incur accuracy penalty!
Venkataramani et al. [43]	CIFAR-10	<1M	×	×	
Zhang et al. [45]	CALTECH	<1M	×	X	
Sarwar et al. [37]	CIFAR-100	<1M	×	X	Evaluated on CIFAR w/
Mrazek et al. [34]	CIFAR-10	21M	1	X	
Mrazek et al. [33]	CIFAR-10	120M	1	×	small models

This work: We show it is possible to use approximation and maintain accuracy

	Largest dataset	Model MACs	Retrain free?	Zero loss?
Venkataramani et al. [43]	CIFAR-10	<1M	×	X
Zhang et al. [45]	CALTECH	<1M	×	×
Sarwar et al. [37]	CIFAR-100	<1M	×	×
Mrazek et al. [34]	CIFAR-10	21M	1	×
Mrazek et al. [33]	CIFAR-10	120M	\checkmark	X
AutoApprox (ours)	ImageNet-1k	2B	\checkmark	1

Key Insight: Add additional approximate units next to exact units as a low-power "fast-path"



At inference, router selects <u>one systolic array</u>

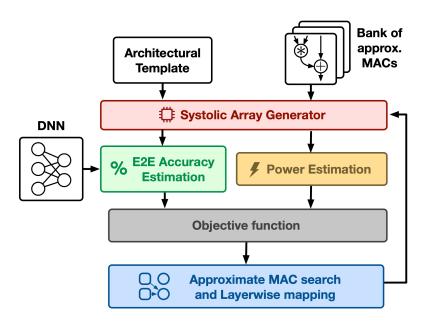
Error-tolerant workloads:

 \rightarrow Save power by using approximate MAC

Sensitive workloads:

→ Maintain accuracy by using exact MAC

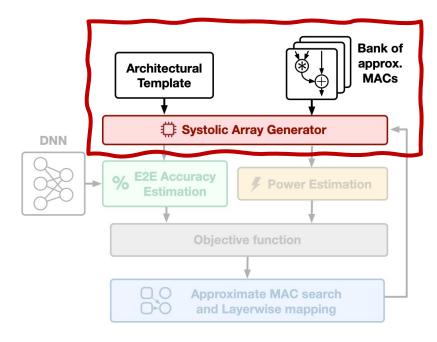
AutoApprox: full-stack framework to design zero-loss approximate accelerators



Contributions:

- 1. Approx. TPU architecture w/ exact fallback
- 2. Whole chip PPA estimates
- **3. Fast e2e accuracy simulation:** 7000x simulation speedup
- **4. ML-guided search:** Novel Bayesian optimizer for large combinatorial space of circuits

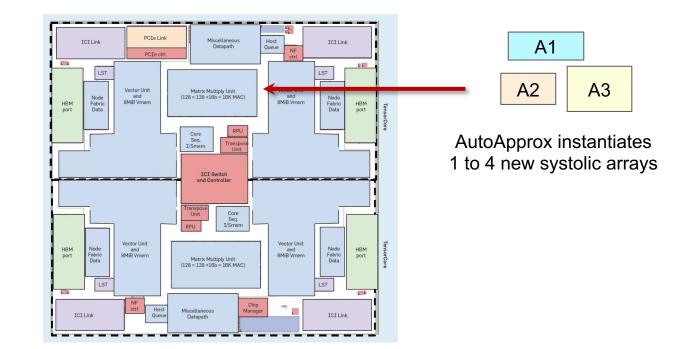
Automatically generate diverse approximate accelerators



Contributions:

- 1. Approx. TPU architecture w/ exact fallback
- 2. Whole chip PPA estimates
- **3. Fast e2e accuracy simulation:** 7000x simulation speedup
- 4. ML-guided search: Novel Bayesian optimizer for large combinatorial space of circuits

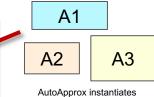
Automatically generate diverse approximate accelerators



TPUv3-based architectural template

Automatically generate diverse approximate accelerators

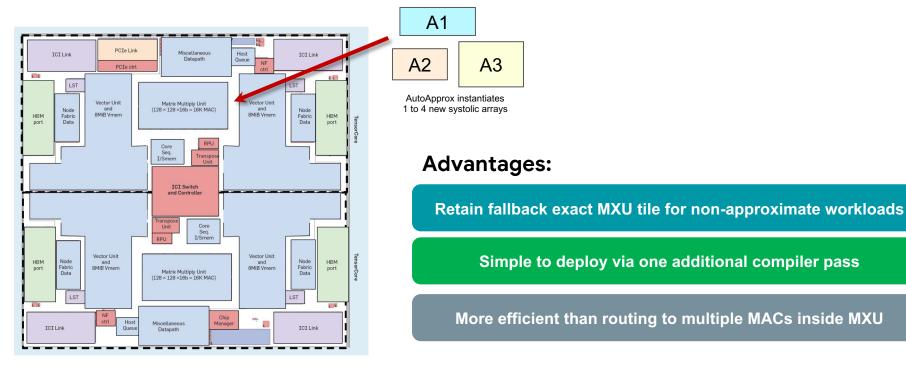
TPUv3-based architectural template



- Systolic array generator instantiates diverse set of approximate TPU designs
- Architectural template: TPU w/ sister approximate matrix multipliers
- Approximate MAC bank: 36 MACs from prior work, can be augmented w/ new designs

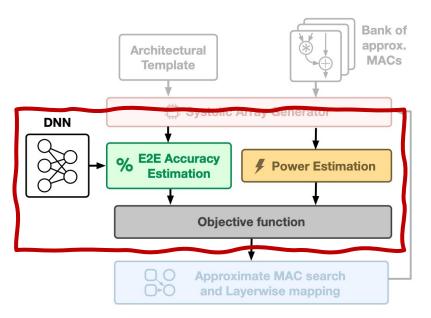
Automatically generate diverse approximate accelerators

Google Research



TPUv3-based architectural template

Performance estimation of candidates



Contributions:

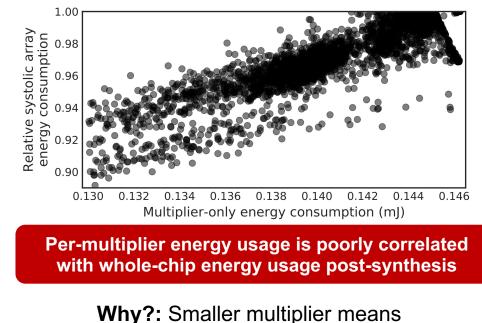
1. Approx. TPU architecture w/ exact fallback

2. Whole chip PPA estimates

- **3. Fast e2e accuracy simulation:** 7000x simulation speedup
- 4. ML-guided search: Novel Bayesian optimizer for large combinatorial space of circuits

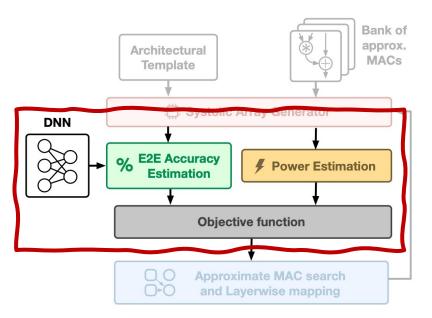
Performance estimation of candidates: POWER, AREA

Power and area estimates are whole-chip, not per-multiplier



lower power usage from interconnect

Performance estimation of candidates



Contributions:

- 1. Approx. TPU architecture w/ exact fallback
- 2. Whole chip PPA estimates
- **3. Fast e2e accuracy simulation:** 7000x simulation speedup
- 4. ML-guided search: Novel Bayesian optimizer for large combinatorial space of circuits

Performance estimation of candidates: <u>ACCURACY</u>

Very large datasets are important but cost-prohibitive to simulate

ImageNet:

1.2M training samples50K validation samples224x224 images

- Most important use-cases involve large, diverse datasets
- MNIST, CIFAR-10 not representative!

Performance estimation of candidates: <u>ACCURACY</u>

Very large datasets are important but cost-prohibitive to simulate

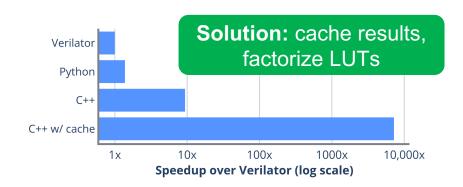
ImageNet:

1.2M training samples50K validation samples224x224 images

Evaluating single ImageNet sample with commercial simulator takes <u>4.2 hours</u>

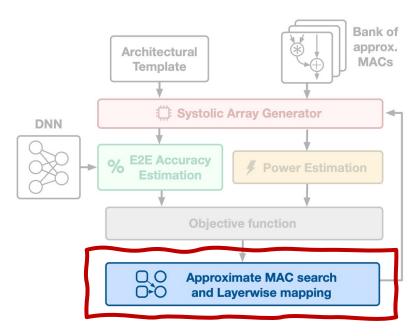
Performance estimation of candidates: <u>ACCURACY</u>

Very large datasets are important but cost-prohibitive to simulate



Related approach (caching only): V. Mrazek, L. Sekanina, and Z. Vasicek. Using libraries of approximate circuits in design of hardware accelerators of deep neural networks. AICAS, 2020.

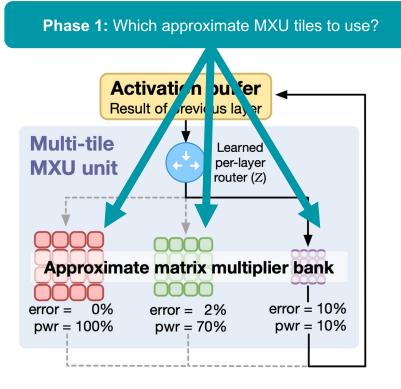
Performance estimation of candidates



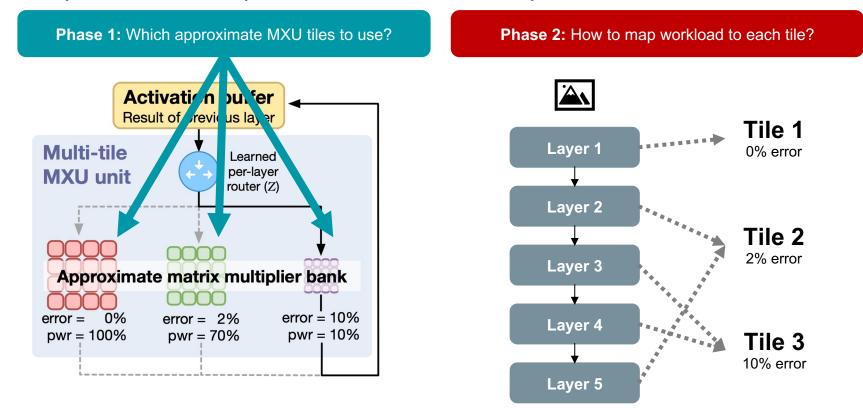
Contributions:

- 1. Approx. TPU architecture w/ exact fallback
- 2. Whole chip PPA estimates
- **3. Fast e2e accuracy simulation:** 7000x simulation speedup
- **4. ML-guided search:** Novel Bayesian optimizer for large combinatorial space of circuits

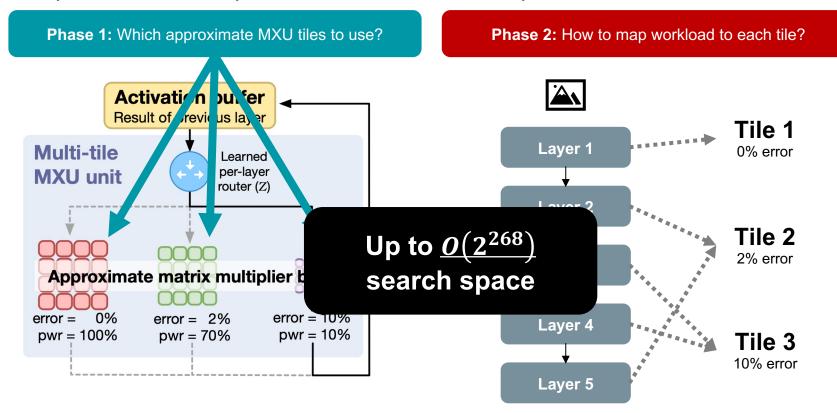
ML-guided search to jointly search for hardware + mapping Two phase search space finds zero-loss chips but is enormous



ML-guided search to jointly search for hardware + mapping Two phase search space finds zero-loss chips but is enormous



ML-guided search to jointly search for hardware + mapping Two phase search space finds zero-loss chips but is enormous



Accelerate search w/ Bayesian optimization, pruning and continuous relaxation

$$\min_{Z} \sum_{i=1}^{N} q_{i}^{\mathsf{T}} Z_{i}$$
s.t. $\operatorname{ACC}(Z) \geq \tau$
 $\operatorname{AREA}(Z) \leq \phi$
 $\sum_{j=1}^{K} Z_{ij} = 1 \quad \forall i \in \{1, \dots, N\}$
 $Z \in \{0, 1\}^{N \times K}$

Search space O(2²⁶⁸)

Accelerate search w/ Bayesian optimization, pruning and continuous relaxation

$$\begin{array}{ll} \min_{Z} & \sum_{i=1}^{N} q_{i}^{\mathsf{T}} Z_{i} \\ \text{s.t.} & \operatorname{ACC}(Z) \geq \tau \\ & \operatorname{AREA}(Z) \leq \phi \\ & \sum_{j=1}^{K} Z_{ij} = 1 \quad \forall i \in \{1, \dots, N \\ & Z \in \{0, 1\}^{N \times K} \end{array}$$

Search space O(2²⁶⁸)

 (a) Bayesian optimization to balance exploration + exploitation w/ learned surrogate cost function

Accelerate search w/ Bayesian optimization, pruning and continuous relaxation

$$\begin{split} \min_{z} & \sum_{i=1}^{N} q_{i}^{\mathsf{T}} Z_{i} \\ \text{s.t.} & \operatorname{ACC}(Z) \geq \tau \\ & \operatorname{AREA}(Z) \leq \phi \\ & \sum_{j=1}^{K} Z_{ij} = 1 \quad \forall i \in \{1, \dots, N\} \\ & Z \in \{0, 1\}^{N \times K} \end{split}$$
 (a) Bayesian optimization to balance exploration + exploitation w/ learned surrogate cost function (b) Prune catastrophic trials using greedy lower bound

Accelerate search w/ Bayesian optimization, pruning and continuous relaxation

$$\min_{Z} \sum_{i=1}^{N} q_{i}^{\mathsf{T}} Z_{i}$$
s.t. $\operatorname{ACC}(Z) \geq \tau$
 $\operatorname{AREA}(Z) \leq \phi$
 $\sum_{j=1}^{K} Z_{ij} = 1 \quad \forall i \in \{1, \dots, N\}$
 $Z \in \{0, 1\}^{N \times K}$
Search space O(2²⁶⁸)
(a) Bayesian optimization to
balance exploration +
exploitation w/ learned
surrogate cost function
(b) Prune catastrophic trials
using greedy lower bound
(c) Relax combinatorial
search space into
continuous space

Results: Evaluating AutoApprox on large-scale workload + dataset

Workload: ResNet-50 on ImageNet-1k Evaluating routed TPU design w/ approximate cores Energy, perf. and area evaluated at <10nm PDK

Hardware design	Total chip energy (relative to exact)	Total chip area (exact + approx)	Top-1 accuracy	Top-5 accuracy
Exact 8-bit MXU	$1.0 \times$	1.0 imes	72.1%	90.7%

Results: Evaluating AutoApprox on large-scale workload + dataset

Workload: ResNet-50 on ImageNet-1k Evaluating routed TPU design w/ approximate cores Energy, perf. and area evaluated at <10nm PDK

Hardware design	Total chip energy (relative to exact)	Total chip area (exact + approx)	Top-1 accuracy	Top-5 accuracy
Exact 8-bit MXU	1.0×	1.0 imes	72.1%	90.7%
Greedy layerwise search Google Vizier [12]	0.976× 0.969×	1.281× 2.712×	71.2% 65.82%	90.3% 86.2%

1%-6% lower accuracy than baseline

Results: Evaluating AutoApprox on large-scale workload + dataset

Workload: ResNet-50 on ImageNet-1k Evaluating routed TPU design w/ approximate cores Energy, perf. and area evaluated at <10nm PDK

Hardware design	Total chip energy (relative to exact)	Total chip area (exact + approx)	Top-1 accuracy	Top-5 accuracy
Exact 8-bit MXU	1.0 imes	1.0 imes	72.1%	90.7%
Greedy layerwise search	0.976×	1.281×	71.2%	90.3%
Google Vizier [12]	0.969×	2.712×	65.82%	86.2%
AutoApprox-S (power optimized)	0.939×	$1.844 \times$ 0.948 $ imes$	66.5%	87.42%
AutoApprox-L (balanced)	0.968×		72.5%	90.7%

3.2% - 6.1% energy savings!

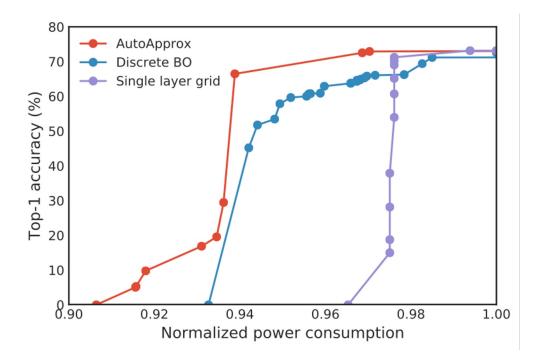
Results: Significant energy savings for TPU with zero accuracy loss

Workload: ResNet-50 on ImageNet-1k Evaluating routed TPU design w/ approximate cores Energy, perf. and area evaluated at <10nm PDK

Hardware design	Total chip energy (relative to exact)	Total chip area (exact + approx)	Top-1 accuracy	Top-5 accuracy
Exact 8-bit MXU	1.0 imes	1.0 imes	72.1%	90.7%
Greedy layerwise search Google Vizier [12]	0.976× 0.969×	1.281× 2.712×	71.2% 65.82%	90.3% 86.2%
AutoApprox-S (power optimized) AutoApprox-L (balanced) AutoApprox-XL (accuracy optimized)	$0.939 \times 0.968 \times 1.024 \times$	$1.844 \times 0.948 \times 1.189 \times$	66.5% 72.5% 73.1%	87.42% 90.7% 91.1%

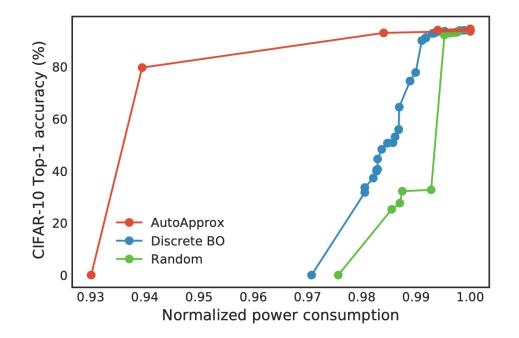
Results: AutoApprox system pareto optimal to baselines

Workload: ResNet-50 on ImageNet-1k Evaluating routed TPU design w/ approximate cores Energy, perf. and area evaluated at <10nm PDK



Results: AutoApprox system pareto optimal to baselines

Workload: VGG-19 on CIFAR-10 Evaluating routed TPU design w/ approximate cores Energy, perf. and area evaluated at <10nm PDK



Learning to Design Accurate Deep Learning Accelerators with Inaccurate Multipliers

Paras Jain, Safeen Huda, Martin Maas, Joseph Gonzalez, Ion Stoica, Azalia Mirhoseini

Please reach out! parasj@berkeley.edu

Problem: How to achieve power savings with an approximate inference accelerator without any accuracy loss on a large-scale dataset?

Approach: Pack heterogenous approximate MXUs as sidekicks to a fallback exact MXU

Contributions:

- Approx. TPU architecture w/ exact fallback
- Whole chip PPA estimates
- Fast e2e accuracy simulation
- ML-guided search

Key results:

- Save up to 6% MXU power end-to-end on real TPU design (<10nm)
- Method significantly outperforms competitive baselines
- Opens new orthogonal avenue for chip efficiency beyond quantization + sparsity