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Deep learning’s inference energy problem
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Deep learning’s inference energy problem
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Approximate computing as a new way
to save power on DNN accelerators

Quantization

Pruning

Approximate MACs

• Deep learning models are tolerant 
to approximations like quantization
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Approximate computing as a new way
to save power on DNN accelerators

Quantization

Pruning

Approximate MACs
This talk

• Deep learning models are tolerant 
to approximations like quantization

• We study: emerging approximate 
multipliers + adders to trade-off 
accuracy for power

• Complementary approach to 
quantization and sparsity

• Challenge: how to maintain high 
accuracy under approximation?
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Approximate computing as a new way
to save power on DNN accelerators

Quantization

Pruning

Approximate MACs
This talk

How to achieve power savings with an 
approximate inference accelerator without 

any accuracy loss on a large-scale dataset?
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Background: approximate MACs to trade-off
power and accuracy

[1] https://dl.acm.org/doi/10.1145/2228360.2228509
[2] https://ieeexplore.ieee.org/abstract/document/7926993
[survey] https://www.osti.gov/pages/servlets/purl/1286958

• Parts of fully-accurate circuits can be removed to 
trade-off accuracy for better power efficiency

• Example: truncate the carry chain in an 8-bit adder

• Extensive prior work to produce such 
multipliers/adders [1] [2] [survey].

• Functionally approximate circuits only

https://dl.acm.org/doi/10.1145/2228360.2228509
https://ieeexplore.ieee.org/abstract/document/7926993
https://www.osti.gov/pages/servlets/purl/1286958
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Background: approximate MACs to trade-off
power and accuracy

A x B ≈ C
4.2% mean relative error

3.61x lower energy consumption

V. Mrazek, R. Hrbacek, Z. Vasicek and L. Sekanina, EvoApprox8b: Library of approximate adders and multipliers for circuit design and benchmarking of 
approximation methods. Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017
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Challenge: Prior designs with
approximate MACs degrade accuracy

Must incur
accuracy penalty!

Evaluated on CIFAR w/ 
small models
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This work: We show it is possible to use
approximation and maintain accuracy

103 more data 
(bytes)
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Key Insight: Add additional approximate units next to 
exact units as a low-power “fast-path”

At inference, router selects
one systolic array

Error-tolerant workloads:
à Save power by using approximate MAC

Sensitive workloads:
à Maintain accuracy by using exact MAC
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AutoApprox: full-stack framework to design
zero-loss approximate accelerators

Contributions:
1. Approx. TPU architecture w/ exact fallback

2. Whole chip PPA estimates
3. Fast e2e accuracy simulation: 7000x 

simulation speedup

4. ML-guided search: Novel Bayesian optimizer 
for large combinatorial space of circuits
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Candidate hardware generation
Automatically generate diverse approximate accelerators

Contributions:
1. Approx. TPU architecture w/ exact fallback

2. Whole chip PPA estimates
3. Fast e2e accuracy simulation: 7000x 

simulation speedup

4. ML-guided search: Novel Bayesian optimizer 
for large combinatorial space of circuits
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Candidate hardware generation
Automatically generate diverse approximate accelerators

A1

A2 A3

TPUv3-based architectural template

AutoApprox instantiates
1 to 4 new systolic arrays
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Candidate hardware generation
Automatically generate diverse approximate accelerators

A1

A2 A3

TPUv3-based architectural template

AutoApprox instantiates
1 to 4 new systolic arrays

• Systolic array generator instantiates diverse 
set of approximate TPU designs

• Architectural template: TPU w/ sister 
approximate matrix multipliers

• Approximate MAC bank: 36 MACs from prior 
work, can be augmented w/ new designs
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Candidate hardware generation
Automatically generate diverse approximate accelerators

A1

A2 A3

TPUv3-based architectural template

AutoApprox instantiates
1 to 4 new systolic arrays

Advantages:

Retain fallback exact MXU tile for non-approximate workloads

Simple to deploy via one additional compiler pass

More efficient than routing to multiple MACs inside MXU
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Performance estimation of candidates

Contributions:
1. Approx. TPU architecture w/ exact fallback

2. Whole chip PPA estimates
3. Fast e2e accuracy simulation: 7000x 

simulation speedup

4. ML-guided search: Novel Bayesian optimizer 
for large combinatorial space of circuits
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Performance estimation of candidates: POWER, AREA
Power and area estimates are whole-chip, not per-multiplier

Per-multiplier energy usage is poorly correlated 
with whole-chip energy usage post-synthesis

Why?: Smaller multiplier means 
lower power usage from interconnect
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Performance estimation of candidates

Contributions:
1. Approx. TPU architecture w/ exact fallback
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Performance estimation of candidates: ACCURACY
Very large datasets are important but cost-prohibitive to simulate

• Most important use-cases involve 
large, diverse datasets

• MNIST, CIFAR-10 not representative!

ImageNet:
1.2M training samples
50K validation samples

224x224 images
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Performance estimation of candidates: ACCURACY
Very large datasets are important but cost-prohibitive to simulate

Evaluating single ImageNet sample 
with commercial simulator

takes 4.2 hours

ImageNet:
1.2M training samples
50K validation samples

224x224 images
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Performance estimation of candidates: ACCURACY
Very large datasets are important but cost-prohibitive to simulate

Evaluating single ImageNet sample 
with commercial simulator

takes 4.2 hours

Solution: cache results, 
factorize LUTs

Related approach (caching only): V. Mrazek, L. Sekanina, and Z. Vasicek. Using libraries of approximate circuits in design of hardware accelerators of 
deep neural networks. AICAS, 2020. 

ImageNet:
1.2M training samples
50K validation samples

224x224 images
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Performance estimation of candidates

Contributions:
1. Approx. TPU architecture w/ exact fallback

2. Whole chip PPA estimates
3. Fast e2e accuracy simulation: 7000x 

simulation speedup

4. ML-guided search: Novel Bayesian optimizer 
for large combinatorial space of circuits
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ML-guided search to jointly search for hardware + mapping
Two phase search space finds zero-loss chips but is enormous

Phase 1: Which approximate MXU tiles to use?
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ML-guided search to jointly search for hardware + mapping
Two phase search space finds zero-loss chips but is enormous

Phase 1: Which approximate MXU tiles to use? Phase 2: How to map workload to each tile?

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Tile 1
0% error

Tile 2
2% error

Tile 3
10% error
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ML-guided search to jointly search for hardware + mapping
Two phase search space finds zero-loss chips but is enormous

Phase 1: Which approximate MXU tiles to use? Phase 2: How to map workload to each tile?

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Tile 1
0% error

Tile 2
2% error

Tile 3
10% error

Up to 𝑶 𝟐𝟐𝟔𝟖

search space
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ML-guided search to jointly search for hardware + mapping
Accelerate search w/ Bayesian optimization, pruning and continuous relaxation

Search space O(2268)
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Search space O(2268)

(a) Bayesian optimization to 
balance exploration + 
exploitation w/ learned 
surrogate cost function

ML-guided search to jointly search for hardware + mapping
Accelerate search w/ Bayesian optimization, pruning and continuous relaxation
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Search space O(2268)

(a) Bayesian optimization to 
balance exploration + 
exploitation w/ learned 
surrogate cost function

(b) Prune catastrophic trials 
using greedy lower bound

ML-guided search to jointly search for hardware + mapping
Accelerate search w/ Bayesian optimization, pruning and continuous relaxation
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Search space O(2268)

(a) Bayesian optimization to 
balance exploration + 
exploitation w/ learned 
surrogate cost function

(c) Relax combinatorial 
search space into 
continuous space

(b) Prune catastrophic trials 
using greedy lower bound

ML-guided search to jointly search for hardware + mapping
Accelerate search w/ Bayesian optimization, pruning and continuous relaxation
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Results: Evaluating AutoApprox on large-scale
workload + dataset
Workload: ResNet-50 on ImageNet-1k
Evaluating routed TPU design w/ approximate cores
Energy, perf. and area evaluated at <10nm PDK
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Results: Evaluating AutoApprox on large-scale
workload + dataset

1%-6% lower accuracy 
than baseline

Workload: ResNet-50 on ImageNet-1k
Evaluating routed TPU design w/ approximate cores
Energy, perf. and area evaluated at <10nm PDK
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Results: Evaluating AutoApprox on large-scale
workload + dataset
Workload: ResNet-50 on ImageNet-1k
Evaluating routed TPU design w/ approximate cores
Energy, perf. and area evaluated at <10nm PDK

3.2% - 6.1% 
energy savings!
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Results: Significant energy savings for TPU with zero 
accuracy loss

Improve 
accuracy by 1%

Workload: ResNet-50 on ImageNet-1k
Evaluating routed TPU design w/ approximate cores
Energy, perf. and area evaluated at <10nm PDK
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Results: AutoApprox system pareto optimal to baselines
Workload: ResNet-50 on ImageNet-1k
Evaluating routed TPU design w/ approximate cores
Energy, perf. and area evaluated at <10nm PDK
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Results: AutoApprox system pareto optimal to baselines
Workload: VGG-19 on CIFAR-10
Evaluating routed TPU design w/ approximate cores
Energy, perf. and area evaluated at <10nm PDK
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Learning to Design Accurate Deep Learning 
Accelerators with Inaccurate Multipliers

Problem: How to achieve power savings with an approximate inference accelerator 
without any accuracy loss on a large-scale dataset?

Approach: Pack heterogenous approximate MXUs as sidekicks to a fallback exact MXU

Contributions:
• Approx. TPU architecture w/ exact fallback
• Whole chip PPA estimates
• Fast e2e accuracy simulation
• ML-guided search

Key results:
• Save up to 6% MXU power end-to-end on real TPU design (<10nm)
• Method significantly outperforms competitive baselines
• Opens new orthogonal avenue for chip efficiency beyond quantization + sparsity

Paras Jain, Safeen Huda, Martin Maas, Joseph Gonzalez, Ion Stoica, Azalia Mirhoseini

Please reach out!
parasj@berkeley.edu


