Paras Jain, Simon Mo, Ajay Jain, Alexey Tumanov, Joseph Gonzalez, lon Stoica

Background/Context:

* ML inference increasingly important for soft real-time
latency-sensitive applications

Problem:

* Model complexity increases — > latency increases; too
slow for soft—real time applications

* GPU — >more attractive for inference, suffers low
utilization (under latency constraints)

Solution:
* State of the art . temporal multiplexing

* Proposal: multiplex GPUs across multiple models and time
* Approaches: kemel coalescing, kernel constraining

* Goal:VUW inspired JIT compiler that enables serverless
abstractions for GPU

Motivation: Online inference leads to low GPUs utilization

. C )
As models continue to grow, GPUs are the only way to meet online inference
10s latency objectives
g N o 0mme o 4050ms
Q
= e S e e e e e e e oo 300ms SLO
—
8 0.1s 140ms 147ms
c
g
< 0.01s arms
0.001s| %

2013 2014 2015 2016 2017 2018

AlexNet VGG-16 ResNet-152 DenseNet-161 SENet-154
Top-1: 58% Top-1: 72% Top-1: 77% Top-1: 78% Top-1: 79%

4 N\
GPUs are under-utilized in online inference due to small batch-sizes

B atch
size 126

& 300ms
(@)
=
> f
o 200ms %
v X
e
S x*/ x
— x* 100ms SLO
- — 100ms [— I I I -’g(- [ [ [
Ir—cs Batch X B_atch
cize 1 ¥ X size 26
p X X

30%

10% 20% 40%

Key requirements for GPU kernel multiplexing

* Runtime performance must be predictable
* Multiplexing should increase resource-efficiency

One single query

™I
} A A S KNG T e
LA )T
TN T =

TR T
I TN

e The runtime should be fair to all its tenants:
- Equal treatment: same SLO guarantees
- Equal outcome:; strict inter-tenant isolation

e Enable throughput vs latency tradeoff

- )
=" Each launch configuration
:  exposes tradeoff between
; latency and throughput
_ PyTorch Latency (14ms)
g: 200 - .
Optimized, Single Worker
0 2 4 6 8 Latenl(; (ms)12 14 16 18 20
L J

Time-only multiplexing: poor resource-efficiency

* Time-multiplexing: on device scheduler enables interleaved
execution of multiple CUDA contexts (no parallel execution)

* Pro: Guaranteed isolation between tenants and predictability
* Con:Sharply degraded throughput and increased latencies

Space-Time multiplexing: coalesce similar kernels

4 N
/X throughput improvement when coalesce ResNet kemels compared to time multiplex

ResNet-18 conv2_ 2
M =256, N=128, K= 1152

Fast GPU Primitives for Multiplexed Deep Learning Inference «riselab

UC Berkeley

GPU Partitioning: constraint each kernel to # of blocks

Constrained kemels achieves 2.6x throughput when dispatched together

Relu 1

Before

Relu 1

50%
After

Relu 2
Conv1l Conv?2

Relu 2
Convl Conv?2 -

51]
|

[
|

TFlops

/Sl

5 Oo/ 0- 1 1 1 1 1 1 1 1
(0 0 &0 100 150 200 250 300 350

blocks allocated

block

10
() 20
() 40
() 80

constraint

Using less number of GPU blocks incurs litde latency overhead

Skyline: Constrainted 80 Resnet 50

Max 80 Blocks: 4.8ms

. Latency (us)
Skyline: Unconstrained Resnet 50

Unconstrainted Blocks: 4.2ms

0 1000

Conwvolution

2000

4000 5000 6000 7000

Latency (us)

3000

Others

8000

% of peak FP throughput

5 6000
Relul Relu?2 2 4 o
|
Conv1l Conv 2 3 200 .V //V
Before £@ 4000 $¥ __ space-time
o 22 (proposed)
£3 3000 | J\ - -onl
8_?5 d pace-onily
|~ ~-v--- Time-onl
o)) 2000 f Yy
Relul Relu?2 % Y,
Coalesced Conv o #::
L.
0
After 0 30 60 90 120
Number of Kernels
\_ /

DNN frameworks dispatch
kernels schematics
to a JIT compiler

JIT compiler optimizes
models for efficiency
and latency requirements

(5] (] (3] (5] (] {s] (][5}
(5] (sw] ] (5] [sw] (] [ 5] [ow]

GPU achieves
high utilization and
latency SLO attainment

GPU

N




