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Background/Context:

* ML inference increasingly important for soft real-time
latency-sensitive applications

Problem:

* Model complexity increases — > latency increases; too
slow for soft—real time applications

* GPU — >more attractive for inference, suffers low
utilization (under latency constraints)

Solution:
* State of the art . temporal multiplexing

* Proposal: multiplex GPUs across multiple models and time
* Approaches: kemel coalescing, kernel constraining

* Goal:VUW inspired JIT compiler that enables serverless
abstractions for GPU

Motivation: Online inference leads to low GPUs utilization
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As models continue to grow, GPUs are the only way to meet online inference
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GPUs are under-utilized in online inference due to small batch-sizes
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Key requirements for GPU kernel multiplexing

* Runtime performance must be predictable
* Multiplexing should increase resource-efficiency
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e The runtime should be fair to all its tenants:
- Equal treatment: same SLO guarantees
- Equal outcome:; strict inter-tenant isolation

e Enable throughput vs latency tradeoff
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Time-only multiplexing: poor resource-efficiency

* Time-multiplexing: on device scheduler enables interleaved
execution of multiple CUDA contexts (no parallel execution)

* Pro: Guaranteed isolation between tenants and predictability
* Con:Sharply degraded throughput and increased latencies

Space-Time multiplexing: coalesce similar kernels
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/X throughput improvement when coalesce ResNet kemels compared to time multiplex
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GPU Partitioning: constraint each kernel to # of blocks

Constrained kemels achieves 2.6x throughput when dispatched together

Relu 1

Before

Relu 1

50%
After

Relu 2
Conv1l Conv?2

Relu 2
Convl Conv?2 -

51]
|

[
|

TFlops

/Sl

5 Oo/ 0- 1 1 1 1 1 1 1 1
(0 0 &0 100 150 200 250 300 350

blocks allocated

block

10
() 20
() 40
() 80

constraint

Using less number of GPU blocks incurs litde latency overhead
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DNN frameworks dispatch
kernels schematics
to a JIT compiler

JIT compiler optimizes
models for efficiency
and latency requirements
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GPU achieves
high utilization and
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